
Independent Research  
 

 1 © 2020 mroling 
 

Does Handwriting Text Recognition  
Work for Damaged Archives? 

Marco Roling MA  
E-mail: info@marcoroling.nl 

 
 

Abstract 

Handwriting Text Recognition (HTR) is used on a large scale for digitized archives, but so far 
experiments have focused on manuscripts with a high standard of preservation and legibility. 
This paper describes some controlled experiments done on text samples with various types 
and degrees of archival damage, in order to assess their suitability for HTR. Also some ideas 
are expressed about how to predict the success of HTR when it is applied to large volumes of 
scans. Lastly, it is suggested to enhance scans before subjecting them to the HTR process, 
with the intention to further improve the overall quality of automated transcriptions. 
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1. HTR and the promise of automated transcription 

In recent years, Handwriting Text Recognition (HTR) of 
manuscripts has dramatically improved. The machine learning 
capabilities of computers, using neural networking, pattern 
recognition and probability algorithms, have almost reached 
maturity and are starting to be applicable to larger volumes of 
scans of handwritten documents. There are several academic 
research groups around the globe who are active in this field. 
One of them is READ-coop, a European cooperative 
institution that originated from the University of Innsbruck, 
and that has developed the end-user tool called Transkribus 
over the last years.1 Transkribus runs on a home computer 
with the real processing done remotely on an Austrian server. 
Scanned images of handwritten documents can be uploaded 
and transcriptions automatically generated for these pages 
using a previously trained HTR model (figure 1).  

Automated transcription results come close to perfection, 
with only some margin of error. Results can be used 
immediately in a full text search engine, can be analysed 
linguistically or processed for named entity recognition. In 
this way manuscript archives can become more accessible and 
usable to scholars without them having to take extensive 

 
1 https://read.transkribus.eu/  

palaeography classes first and to read page by page to locate 
historically relevant information.  

Besides using automated transcription, anyone with 
manuscript scans can start and train an HTR model from 
scratch or on top of an already existing one. Scans with 
matching ground truth transcriptions can be fed into the 
computer learning engine and the resulting trained model can 
again be shared with others. A model can be based on any 
number and any type of documents and can be any language. 
Even printed text can be used (until recently the sole domain 
of Optical Character Recognition, OCR), which is useful as 
printing goes back to the 16th century and old fonts might not 
be recognized in modern OCR so easily. Consistent character 
writing such as in medieval texts, or Arabic or Japanese 
scripts, are other examples of texts that can be used for training 
an HTR model. The engine is robust and can handle some 
amount of image noise, and lines do not need to be perfectly 
straight and consistently written. Several writers can be in the 
same collection of manuscripts, which can improve the model 
even further making it better trained and applicable to a larger 
variety of sources. Nowadays, HTR can be regarded as a 
promising tool for automated conversion of handwritten text 
into digital text.  
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Figure 1 – HTR interface showing a text sample and automated 
transcription 
 

1.1 The challenge of transcribing damaged archives 

Today, more and more institutions with manuscript archives 
are eager to upscale their digitization because automated 
transcription is now within reach, and publication online with 
full digital text search is the next stage in providing access to 
the general public. Some digitization projects, like for 
example the ones of the National Archives of the Netherlands 
and the City Archives of Amsterdam, have already resulted in 
millions of scanned documents suitable for applying HTR, and 
transcription has already begun. Projects to fully disclose the 
texts are progressing, sometimes with the aid of dozens of 
enthusiastic crowd sourcing volunteers to make the outcome 
even better.  

The archives used for training the models have mostly been 
the well preserved ones. This makes sense, as new technology 
at first needs to be proven under optimal conditions before 
starting to experiment with sources that are of a lesser quality. 
Some manuscript archives may have suffered from all kinds 
of damage over the past centuries, even leading to partial loss 
because of flooding, fire, insects or ink corrosion. While HTR 
obviously can’t recreate lost archives, some forms of archival 
damage may still yield an acceptable digitized text.  

A good example of the differences in preservation between 
parts of the same archive is that of the Dutch East India 
Company, formed during the 17th and 18th century. This large 
archive was not only created in Holland, but also in several 
colonies and trading places around the world like present day 
South Africa, India and Indonesia. The archives in Indonesia, 
for example, were stored for centuries under tropical humid 
conditions and this led to all imaginable forms of archival 
damage. Not everything suffered, and some parts are 

 
2 https://irongallink.org/igi_index.html 
3 The author attending a lecture (2020) by Birgit Reissland and 
Frank Ligterink on the drawings by Rembrandt. 

surprisingly well preserved, but the legibility of the texts is 
sometimes severely reduced because deterioration processes 
continue to affect the original sources. Three of these 
processes are discussed here in relation to HTR. Paper 
discoloration from almost white to dark brown; the fading of 
the ink from dark brown to almost invisible; and ink corrosion 
that leads to blurring of the text (figure 2). In combination they 
can be really devastating, causing the text to become fully lost  
to the eye, or completely bleed into the paper as a big ink stain. 

 

 

 
Figure 2 – Original text and constructed samples with archival damage 

 
Much historical and also practical research has been done 

on the physics of paper and ink, and how they interact2. The 
specialized craft of paper making was done only in few places 
in the Dutch Republic, using wind and water powered mills, 
and linen textiles as raw materials. Holland, and especially 
Amsterdam, were very active in printing books, newspapers, 
maps and flyers and this demanded a constant influx of paper. 
Local production volumes were insufficient most of the times 
and even paper mills in France and Germany were 
commissioned to supply for the Dutch market.3  

Besides printing, writing and packaging also required 
paper, but of a different texture and density. It can be expected 
that all these different kinds of paper were also transported to 
Batavia, in the former Dutch East Indies, and used for writing 
and archiving. Paper sent to Batavia was not always of the best 
quality, and it took a long time to get there under less than 
optimal conditions. The ink was most likely also transported, 
as the ingredients for making iron-gall ink originate from 
different places in Europe and the Levant, and ink-making and 
selling was a thriving line of business. Bird feathers used for 
writing may have been locally produced around Batavia, but 
this is unknown. In Europe there was a specialized trade in 
goose and raven feathers4. One can imagine that the quality of 
paper, ink and writing feathers all had an influence on the 
handwriting and the possible susceptibility of the finished 
manuscript to various forms of decay over time. The present-
day state of these manuscripts is the result and has to be dealt 
with when applying modern HTR.  

4 See also:  https://www.nicas-research.nl/   
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The question arises if acceptable digital transcription 
results are achievable even if these archives have suffered 
archival damage. 
 
1.2 Using a Dutch language model for HTR  

For a number of years, several institutions in the Netherlands 
and Belgium have been working on HTR models based on the 
Dutch language and Dutch archival sources. The National 
Archives of the Netherlands (NAN) published a public HTR 
model as recently as January 2020. NAN holds a large part of 
the archives of the Dutch East India Company, and has used a 
selection of 4810 scanned pages from the inventory numbers 
7528-9540 for training an HTR model.5  This model is known 
as ‘NAN_GT_M11+’ in Transkribus. It is based on 17th and 
18th century source material and is expected to give 
acceptable results, suitable for application to similar 
manuscripts housed at the Indonesian counterpart. The so-
called Character Error Rate (CER6) of the model, measured on 
the ground truth examples, was reported to be 5.3% and 7.3% 
on a separate random sample set. This means that well over 
90% of the text is correctly transcribed automatically, which 
is acceptable for immediate full text search. This model was 
used in the HTR experiment conducted by the author. 

The experiment focused on three different types of archival 
damage, namely paper discoloration, ink fading and ink 
corrosion. These were chosen because they were expected to 
have a measurable effect on the outcome of HTR processing. 
This hypothesis was tested using the mentioned model with a 
known quality and performance level against a series of 
constructed samples that reflect progressive archival damage. 
A base sample was first manually created and by varying 
different image layers and aspects, another 42 test samples 
were created to reflect different stages of degradation. Images 
were created using regular end user software. Six categories 
were defined to scale the degree of degradation, from ‘some’, 
‘mild’, ‘moderate’, ‘serious’, and ‘severe’ to ‘extreme’ 
archival damage. These categories were based on the 
Metamorfoze archive damage atlas in which many more types 
are described.7 

The base sample (figure 3, first sample on the left) was 
recreated using a snippet of text copied from the published 
archives of the Dutch East India Company on the website of 
‘Sejarah Nusantara’8 of the National Archives of Indonesia in 
collaboration with The Corts Foundation9. This collaboration 
led to the online publication of 1.1 million scans, all from the 
17th and 18th century. The sample snippet used for this 

 
5 Keijser [2]  
6 CER is the percentage of characters that differ from the known 
perfect ground truth transcription, initially used in the model 
training. Besides CER there is also a WER (Word Error Rate) that 
reflects the number of words that differ. Both indicate a quality 
measure for the accuracy of the HTR model 

research was originally copied from inventory number 2567, 
page 304, of the sub archive of the Daily Journals of Batavia 
Castle by the High Government.10 The snippet, dated May 3, 
1735, is actually a Dutch translation of an originally Javanese 
letter from the Sultan of Cheribon to the Governor General of 
Batavia, with a very polite thanks for granting him the title of 
Sultan after succeeding his father and older brother. The nine 
lines of text contain 85 words and 435 characters and although 
short, this is regarded sufficient for the experiment as the 
comparison between the outcomes of all samples is the focus 
of the analysis. 
 

 
Figure 3 – Constructed test samples with increased paper colouring 
 
 

2. Running HTR on constructed samples 

Testing the model first against the base sample gave a 
benchmark CER to be used as a reference for the other 
constructed samples. The model had an outstanding 
performance, with a low CER of 1.6%. Only seven characters 
were not recognized properly (differences in capitals were not 
regarded as errors and ignored). This first test proved that the 
model was well suitable for the experiment. Next, samples 
reflecting degradation through paper discoloration from 
almost white to brown were tested (figure 4, column 
‘browning’). The results showed some variation in CER, a 
little higher than the benchmark, but this could not be regarded 
as really significant. It seemed that the browning of the paper 
hardly influenced HTR.  

To continue, samples with progressive stages of ink fading 
were tested. Results were similar and fading did not seem to 
have a real negative effect on HTR. But when paper 
discoloration and ink fading were combined, an interesting 
break point showed up. Perhaps not surprisingly, when the 
paper had become severely brown and the ink severely faded 
the difference in contrast between the two was reduced to 
almost zero and HTR failed completely. It can be concluded 
though that HTR is robust as long as there is some difference 
in contrast between paper and ink. It is probably fair to say 
that if the human eye can still distinguish between the text and 

7 See: schadeatlas-2010, https://www.metamorfoze.nl/  
8 https://sejarah-nusantara.anri.go.id/ 
9 https://www.cortsfoundation.org/ 
10 Original scan can be found on:  
https://sejarah-nusantara.anri.go.id/marginalia_search/ 
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the paper background, HTR will also be able to recognize the 
text without significant loss compared to the original.  

When testing samples with worsening ink corrosion, HTR 
results showed a dramatic increase in CER when a ‘serious’ 
degree of damage was present in the sample (figure 4). The 
CER graph started to show a steeply rising curve and HTR 
yielded poor results. It needs to be pointed out, however, that 
the used model was not trained to recognize blurred characters 
and words. When taking this into account, the results are 
actually not that bad, and up to a ‘moderate’ degree of ink 
corrosion HTR still leads to automated transcriptions that may 
be acceptable for full text searching. 
 

 

 
Figure 4 – CER results of HTR on scans with combined archival damage in 
different stages 
 

Figure 5 – Constructed samples (extreme ink corrosion on the right) 

 
Combining paper discoloration and ink fading with ink 

corrosion led to more difficulties. Creating the test samples in 
the first place was a challenge, and applying HTR gave results 
that needed some additional analysis. In any case it appeared 
that a rise in ink corrosion accelerated the increase of the CER. 
In fact, the ink corrosion factor dominated the simultaneous 
effects of paper discoloration and ink fading in the results. The 

worst test sample (see ‘b+f+c’ column with ‘extreme’ archival 
damage) eventually gave a CER of 55.6%. This result cannot 
be used for full text search. The initial ground truth 
transcription and matching HTR results are given here to 
illustrate this. 

 
Ground truth original transcription text 
Nadien uw hoog edelens mij in het bestier van mijn ouder 
broeder Sulthan Cheribon hebben gelieven te stellen , en teffens 
te vereeren met den titul van Sulthan Cheribon benevens dese 
krits en sComp: Zegul, gelijk het een en ander door voorm: ouder 
broeder gebruijkt geworden is, Zoo betuijge des wegen mijne 
menigvuldige dankbaarheijd voor uw hoogedelens groote gunste, 
want mijn herte is daar over Zodanig verheugd, als off uw hoog 
edelens mijn vader en ouder broeder van den doode opgeweckt 
en levende gemaekt hadde: 
 
HTR result transcription text (CER 55.6%) 
Naen zen hoog elens wij ten het teste van mijen aeden 
beln sutlan Clerilora hebten geteenen te sallen, : te 
te twaaan achb den : waar alulem: k s 
kner vn pe keijent ggel het n no zindar dara ame m 
boeken getangis: geerha is, zer bnge ds wegem  
vatrige 20  akaaahejjd  en Cosheekens geente geemt: 
waar mijt loot son vaer Petnij verlnge, as en kog 
Eete mijn  an Er beelden van de dts opg 
vonde ccasil haer 
 

 
2.1 HTR predictive modelling 

In the previous section, we have seen how HTR performs 
when applied to constructed samples of handwritten texts with 
increasing archival damage. It appeared that the colour of the 
ink and paper separately hardly influenced HTR but the 
combination did, as decreasing contrast between ink and paper 
led to them becoming indistinguishable. The complex colour 
gradients in ink corrosion also turned out to have a major 
impact. In order to assess if scans of manuscripts lead to 
acceptable results in HTR processing, the next step would be 
to find some automated computational way to perform 
measurements on individual scans.  

Predicting the success of HTR requires more detailed 
understanding of the image characteristics in terms of colour, 
contrast and gradients. In a first attempt, colour and grayscale 
histograms were computer generated. In the colour histogram 
the image colours were separated in three basic channels of 
red, green and blue and plotted in a 3D cube visualization with 
their original colours. Before visualizing the sample image 
this way, the colour data was filtered to reduce noise, some of 
which originated from JPG compression in the image source 
file. HTR has already been proven to be robust to some degree 
of noise, and filtering made the resulting graph more 
interpretable. For the second grayscale histogram the 
unfiltered image data was used to show all colour gradients. 

CER result b(rowning) f(ading) c(orrosion) b+f b+c f+c b+f+c
some 2.5% 3.2% 2.3% 3.4% 2.1% 2.8% 2.8%
mild 2.8% 3.0% 4.1% 3.0% 3.4% 3.4% 3.2%

moderate 3.4% 2.8% 4.8% 4.8% 6.0% 3.2% 4.4%
serious 3.2% 2.5% 8.5% 2.8% 12.9% 3.7% 6.7%
severe 1.4% 3.2% 20.2% 100.0% 28.0% 3.4% 33.3%

extreme 1.8% 3.0% 33.6% 100.0% 48.7% 5.5% 55.6%
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The first sample discussed here was manually constructed. 
The sample showed some paper discoloration and slight ink 
fading, but no noticeable ink corrosion (figure 6). The colour 
histogram of this sample showed distinctly separated clusters 
of a light and darker brown. The light brown cluster included 
a large marker that clearly indicated the discoloured paper 
background. In the most ideal case, when the paper colour 
would have been white and the ink colour black, these clusters 
would be even further apart in the histogram towards the 
extreme left lower and right upper corner. When converting 
the original colour image into grayscale, it showed distinct 
peaks in the histogram, but the expected bimodality turned out 
to be trimodal. probably as a result of JPG compression noise 
being present in the image.  

 

 

 
 
Figure 6 – Constructed sample with mild archival damage, with colour and 
grayscale histograms 
 

It can be argued that samples with distinct colour clusters are 
at least theoretically ideal for HTR, as the histogram indicates 
a clear distinction between ink and paper and suggests optimal 
legibility for man and machine. 

Copied from a scan of the original manuscript, the second 
snippet turned out to be much more complex than the 
manually constructed one discussed before. The snippet also 
showed other signs of archival damage processes. For 
example, the text on the back was shining slightly through to 

the front side due to the ink corrosion process that had 
progressed through the paper (so called: ink bleeding). 
Although still well readable for the trained historian, the 
colour histogram of this sample (figure 7) showed a 
continuous gradient in the colour spectrum from ink to paper, 
very different from the previous example. The colour 
histogram revealed no clear distinction between ink and paper. 
The grayscale histogram again showed a trimodal graph, but 
with the peaks much more connected. The width of the farthest 
left one (indicating the dark text part) cannot be simply 
interpreted as a grade for the ink corrosion. Based on these 
first observations it cannot be concluded that histogram data 
is a good candidate for use in HTR predictive modelling. 

 

 

 
Figure 7 – Real-life sample with more complex archival damage, with 
colour and grayscale histograms 
 

Alternatively, ink corrosion might be approached similar to 
image blurring. The handwritten text can be regarded as a 
picture that is somewhat out of focus. The blurring of an image 
can be assessed with a computated value, using existing 
mathematical calculations (the one used here is known as 
‘Lapacian’). Calculation was done for all the constructed ink 
corrosion examples. The plotted graph showed a clear 
downward trend line in which high values are to be interpreted 
as a low corrosion grade and vice versa (see figure 8). 
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Calculating the blurring for the original image, with even less 
than ‘some’ ink corrosion, resulted in a grade 207. This value 
seems to conflict with the ‘serious’ ink corrosion grading 
reflected in the graph. This could indicate that the constructed 
samples do not accurately represent real samples, which tend 
to be much more complex. Testing a few other real manuscript 
snippets with different grades of ink corrosion did suggest, 
however, that the trend line could be similar, although the 
actual value range differs, starting at a much lower maximum 
than shown in the graph below. For now it seems promising 
that blur grading is a candidate for use in HTR predictive 
modelling. More research is to be done in order to investigate 
other existing algorithms that might be suitable as well.11 
 

Figure 8 – Blur calculation for constructed examples of ink corrosion 
 

2.2 The effect of image enhancement on HTR 

It is expected that digital elimination of the paper colour and 
any traces of back side text will increase the automated 
transcription quality of a scan image. Cleaning up scanned 
images is possible to a large extent, as Schomaker and He 
(2019) have already proved. Neural network deep learning 
algorithms can already reduce most of the image noise as an 
intermediate enhancement step, thus leaving the frontal texts 
with much better contrast and less colour gradient.12   

In addition, digital reduction of ink corrosion effects in 
particular can be tested as well. In order to illustrate its 
potential, one of the constructed examples with ‘extreme’ ink 
corrosion (shown before in figure 5) was converted into 
grayscale and subsequently subdued to so-called binarization 
with a manually chosen threshold (figure 9).13 The threshold 
used for this example was lowered as much as possible to 

 
11 Rosebrock, A. 2015, see: 
https://www.pyimagesearch.com/2015/09/07/blur-detection-with-
opencv/  

maximize the reduction of ink corrosion (eventually chosen to 
be only 3 on a scale to 255). In the HTR result, the CER was 
down from 33.6% to 2.8%, an overwhelming improvement 
and with an acceptable automated transcription. Although the 
constructed example used here may not fully represent real 
examples with extreme corrosion, it is still worthwhile to 
further investigate the use and implication of this method.14 

 

 
Figure 9 – Original sample (left) and image-enhanced sample (right) 
 

Summary 

Handwriting Text Recognition (HTR) has developed into a 
useful and applicable machine learning tool to automate the 
transcription of manuscripts into digital texts. Although many 
archives are well preserved and highly suitable for HTR, some 
archives have suffered damage for centuries because of 
suboptimal preservation conditions and lower quality 
materials like paper and ink. It is important to assess whether 
these archives are also suitable for HTR. Digitizing millions 
of pages is time and resource consuming and only meaningful 
if the resulting texts are legible. This raises the question to 
what extent HTR still produces acceptable results for damaged 
archives. To investigate this, controlled experiments were 
conducted by the author using an excellent HTR model 
created by the National Archives of the Netherlands, and a 
series of manually constructed test images that reflect the 
increasing damage from paper discoloration, ink fading, and 
ink corrosion. Combinations of these processes were included 
in the sample set comprising a total of 42 images. 

From the results, it can be concluded that ink corrosion has 
by far the most negative influence on HTR, when compared to 
paper discoloration and ink fading. Actually, the last two 
hardly influence HTR results individually. However, when 
they are combined, there is a clear break point beyond which 
there is almost zero contrast between the ink and the paper, 
and the text is no longer visible. On the positive side, HTR is 
sufficiently robust to handle a moderate degree of ink 
corrosion, even though the used model was not originally 
trained with degraded archival material. It may therefore be 
possible to improve the model by training it with additional 
scans that have a higher degree of corrosion. But it cannot be 

12 Schomaker, He [1] 
13 https://en.wikipedia.org/wiki/Thresholding_(image_processing)  
14 See appendix 2 for the code used in this experiment 

damage grade
none 2931
some 2105
mild 1317
moderate 565
serious 219
severe 102
extreme 92
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assessed here if this would substantially improve the model, 
lowering the CER on the corrosion samples.  

The author has some doubt about the accuracy of the 
constructed samples that combine two or three types of 
archival damage. An attempt could be made to improve the 
test samples, but at the moment it is not regarded likely that 
this would change the conclusions drawn so far. Additional 
research is advised focusing on other forms of archival 
damage that has affected manuscripts partially, such as burn 
marks, water stains, and small insect holes.  

Prediction of possible HTR success over a large volume of 
scanned manuscripts requires some form of computation that 
deals with recognizing the contrast difference between ink and 
paper on the one hand, and ink corrosion effects on the other 
hand. At first glance, using colour histograms appears to be 
promising, but only seems to be working for the constructed 
sample images with limited colour gradients. Real samples are 
much more complex and even extreme reduction of colour 
noise from the image data does not lead to a clear difference 
in the graph between the frontal text and paper background. 
Calculating blur grades does, however, seem to be effective 
and exact, although there is a difference between the 
constructed and real samples in terms of the range of grading 
values. Additional research with many more real samples is 
needed to verify if this method is indeed useful in practice. 
Further research is advised here in general to try and find other 
reliable computational methods for use in HTR predictive 
modelling.  

Finally, some effects of scan image enhancement were 
tested with HTR. Apart from the automated removal of 
background colour and noise using deep learning algorithms, 
the digital reduction of some of the ink corrosion effects was 
found to contribute much to the quality of the resulting 
automated transcription. Applying image conversion to 
grayscale and subsequent binarization with a chosen threshold 
is promising and can be further optimized, maybe in 
combination with additional machine learning capabilities. 
Other computer vision and machine learning algorithms can 

be researched for their potential use in image enhancement of 
handwritten documents. 

The hands-on experiments as presented in this paper were 
conducted in order to better understand and predict the 
potential of HTR for archival manuscripts with some degree 
of archival damage. The presentation aims to reach a broad 
audience, in particular archival institutions, museums and 
libraries. It is clear that much more research needs to be done 
on this most interesting and challenging topic. Progress is 
ongoing, hopefully leading to additional end user tools that 
will assist owners of manuscript archives in their assessment 
and preparation for successful and large scale application of 
HTR. 
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Appendix 1: Computer generated colour histogram – code example 
################################################################################### 
# It shows a histogram, where RGB channels are separated along the axes 
# Any JPG image is read and each pixel colour evaluated and counted  
# The resulting cube shows the spread of colours, and their relative counts (dots size) 
# 
# This plot was developed with the aim to support analysis of scans of handwritings (ink on paper) 
# to see if a histogram would be useful somehow to mathematically calculate and assess the application of  
# automated text recognition. 
# 
# This code can be run directly in a Jupyter notebook 
# Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib 
################################################################################### 
 
%matplotlib notebook  
 
import numpy as np  
import matplotlib.pyplot as plt  
from mpl_toolkits.mplot3d import Axes3D  
from datetime import datetime 
 
# Set basic input parameters here for further processing 
file_img_input = 'Sample_original'      # define image file name 
nbins = 32                             # define number of bins to be used 
thresh_low = 5000                       # define num_pixels minimum per bin for final cube 
 
# Define input and output image 
imgname_input = file_img_input + '.jpg' 
plot_log = file_img_input + '_log.txt' 
plot_output = file_img_input + '_histcube.jpg' 
 
# Open logfile for writing 
file = open(plot_log,'w')  
 
# Read image as a 3d numpy array  
img = plt.imread(imgname_input) 
 
# transform values as float  
img = img.astype(np.float32) /  256 
 
# make a list with rgb values based on the array  
rgb_list = img.reshape(-1, 3) 
 
# print and write to log  
img_height = img.shape[0]; img_width = img.shape[1]; img_channels = img.shape[2] 
line = '[IMAGE]' + '\n' + 'image_name=' + file_img_input + ' / dateTime_processed=' + str(datetime.now()) + '\n' 
print(line); file.write(line) 
line = 'dimension HeightWidthChannels=' + str(img_height) + '/' + str(img_width) + '/' + str(img_channels) + '\n' 
print(line); file.write(line) 
line = 'num_pixels=' + str(len(rgb_list)) + ' / upper_left_pixel_rgb=' + str(img[0,0]) + '\n' 
print(line); file.write(line) 
 
# create a 3D histogram 
hist, edges = np.histogramdd(rgb_list, bins=nbins, range=[[0,1], [0,1], [0,1]])   
 
# make a list of of the 3D histogram  
hist_list = hist.flatten() 
 
# get the values of the non-zero bins 
indices = np.argwhere(hist_list > 0).flatten()   
h = hist_list[indices] 
 
# start cleanup of the histogram, print and write to log 
max_num_px_perRGB = int(max(h)) 
line = '[BEFORE CLEANUP] num_bins=' + str(h.size) + ' / max_num_px_perRGB=' + str(max_num_px_perRGB) + 
'\n' 
print(line); file.write(line) 



Does Handwriting Text Recognition Work for Damaged Archives?    Marco Roling MA  

 9  
 

 
# reduce noise by applying a lower threshold on the bins 
thresh_low_indices = h < thresh_low 
h[thresh_low_indices] = 0 
 
# assuming that the highest bin contains the background colour, it is reduced here from the plot 
# BGcolor_index = h == max_num_px_perRGB 
# h[BGcolor_index] = 0 
 
# end cleanup of the histogram, print and write to log 
line = '[AFTER CLEANUP] threshold_px_perRGB=' + str(thresh_low) + ' / bins_set_to_zero=' + str((h == 0).sum()) 
+ '\n' 
print(line) 
file.write(line) 
 
# fill 3D grid 
mgrid = np.mgrid[0:nbins, 0:nbins, 0:nbins] / nbins 
mgrid = mgrid.transpose(1, 2, 3, 0) 
mgrid = mgrid.reshape(-1, 3) 
 
# mark colors 
m_colors = mgrid[indices]   
 
# define the rgb coordinates of each bin 
m_r, m_g, m_b = mgrid[indices].T   
  
# redefine marker size, in order to scale down larger markers 
m_s = h**(1/1.8)  
 
# prepare to plot the data cube  
fig = plt.figure(figsize=[10, 10])                           #set the figure size of plot 
ax = fig.add_subplot(111, projection='3d')           #set the type of plot 
ax.set_xlabel('red channel')                                   #set the label of the x-axis 
ax.set_ylabel('green channel')                               #set the label of the x-axis 
ax.set_zlabel('blue channel')                                 #set the label of the x-axis 
ax.set_title('RGB Image Histogram Cube: ' + file_img_input)    #set the label of the x-axis 
ax.set_xlim([0,1]); ax.set_ylim([0,1]); ax.set_zlim([0,1])           #set the scale of the x,y,z-axis 
ax.view_init(elev=10, azim=-45)                         #set the initial elevation and azimut of the plot 
 
# plot the data cube  
ax.scatter(m_r, m_g, m_b, s=m_s, c=m_colors) 
 
# save the data cube image to disk 
plt.savefig(plot_output) 
 
# Close file for writing 
file.close() 
 
 
Appendix 2: Computer generated grayscale histogram and image enhancement – code example 
########################################################################################## 
# It shows another histogram, where RGB is converted into grayscale 
# Next the image is filtered using a threshold, leaving dark text only 
# 
# This code can be run directly in a Jupyter notebook 
# Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib 
########################################################################################## 
 
%matplotlib notebook  
 
import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
  
# Set basic input parameters here for further processing 
file_img_input = 'Sample1'      # define image file name 
threshold = 100                 # define grayscale threshold for cleanup (0=black, 255=white) 
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# Define input and output image 
imgname_input = file_img_input + '.jpg' 
imgcolor = cv2.imread(imgname_input) 
imggray = cv2.imread(imgname_input, 0) 
imgname_output = file_img_input + '_enhanced.jpg' 
 
#decrease size and show image for reference in a popup window 
scale_percent = 25 
width = int(imgcolor.shape[1] * scale_percent / 100) 
height = int(imgcolor.shape[0] * scale_percent / 100) 
dsize = (width, height) 
img_resized = cv2.resize(imgcolor, dsize) 
cv2.imshow('original color image: ' + imgname_input,img_resized) 
cv2.waitKey(0) # waits until a key is pressed 
cv2.destroyAllWindows() # destroys the window showing image 
 
#convert to grey scale image, apply binarization and show histogram  
ret, imgf = cv2.threshold(imggray, threshold, 255, cv2.THRESH_BINARY)  
#ret, imgf = cv2.threshold(imggray, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU) #OTSU is not used`here 
 
plt.subplot(3,1,1), plt.hist(imgcolor.ravel(), bins=256) 
plt.xlabel('Grayscale [dark to light]') 
plt.ylabel('Number of pixels') 
plt.axvline(x=ret, color='r', linestyle='dashed', linewidth=1) 
plt.title('Histogram') 
 
plt.subplot(3,1,2), plt.imshow(imgcolor,cmap = 'gray') 
plt.title('Grayscale image: ' + imgname_input) 
 
plt.subplot(3,1,3), plt.imshow(imgf,cmap = 'gray') 
plt.title('With thresholding: ' + imgname_output) 
 
plt.show() 
plt.imsave(imgname_output, imgf) 
 
 
Appendix 3: Computer generated image blur grading – code example 
############################################################################################## 
# It shows an image and calculated blur grade, indicating possible ink corrosion 
# 
# This code can be run directly in a Jupyter notebook 
# Installation prerequisites are: python, pip, ipython jupyter, numpy, matplotlib, imutils 
############################################################################################## 
 
%matplotlib notebook  
 
# import the necessary packages 
import argparse 
import cv2 
import numpy as np 
from imutils import paths 
from matplotlib import pyplot as plt 
 
def variance_of_laplacian(image): 
 # compute the Laplacian of the image and then return the focus 
 # measure, which is simply the variance of the Laplacian 
 return cv2.Laplacian(image, cv2.CV_64F).var() 
 
# Set basic input parameters here for further processing 
file_img_input = 'Real_Sample3'      # define image file name 
 
# Define input and output image 
imgname_input = file_img_input + '.jpg' 
imgcolor = cv2.imread(imgname_input) 
imggray = cv2.imread(imgname_input, 0) 
imgname_output = file_img_input + '_enhanced.jpg' 
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#set image 
image = cv2.imread(imgname_input) 
#decrease size 
scale_percent = 50 
width = int(imgcolor.shape[1] * scale_percent / 100) 
height = int(imgcolor.shape[0] * scale_percent / 100) 
dsize = (width, height) 
image_resized = cv2.resize(imgcolor, dsize) 
#convert to grayscale 
grayimage = cv2.cvtColor(image_resized, cv2.COLOR_BGR2GRAY) 
 
# calculate and show blur 
fm = variance_of_laplacian(grayimage) 
# show the image 
cv2.putText(image_resized, "{}: {:.2f}".format("blur grade: ", fm), (10, 30), 
 cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 3) 
cv2.imshow("Image: " + file_img_input, image_resized) 
key = cv2.waitKey(0)# 

 
 
 
 


